Talk:953: 1 to 10

Explain xkcd: It's 'cause you're dumb.
Revision as of 22:01, 26 March 2015 by Lackadaisical (talk | contribs)
Jump to: navigation, search

One of correct answers is P = 1 + 1 - |sgn(10 - 1 - 1)|

(|x| is absolute value of x, sgn(x) is 1 when x > 0, 0 when x = 0, and -1 when x < 0)


If 10 = 1 + 1, then P = 10 - |sgn(0)| = 10 - |0| = 10

If 10 > 1 + 1, then P = 1 + 1 - |sgn(10 - 1 - 1)| = 1 + 1 - |1| = 1

If 10 < 1 + 1, then P = 1 + 1 - |sgn(10 - 1 - 1)| = 1 + 1 - |-1| = 1

So P is 10 iif the question was is in binary, and 1 iif it was not in binary.

93.73.186.104 16:26, 6 February 2013 (UTC)

The absolute value is unnecessary. When is 10 ever less than 1+1?108.162.219.202 20:28, 3 January 2014 (UTC)

I don't think the explanation is right, I mean i don't know binary but i don't think the joke is that he's saying a 4 as in 100% Lackadaisical (talk) 00:23, 7 November 2013 (UTC)

A 4 is not 100%, but a 3/4 is always 75%. 108.162.212.206 22:47, 26 January 2014 (UTC)
Actually, my comment was in reference to this: "Since 4 in binary is "100" (one-zero-zero) the joke is that it is 100% likely that the question is binary -- or it could simply be 4 of 10 - which means that the question has evolved into recursive ambiguity. Also, the person asking the question does not know what a 4 is since there is no 4 in binary." The problem I had with it was taken care of in a previous edit.

1.(1) is the best answer I've got Halfhat (talk) 11:53, 5 April 2014 (UTC)

"How likely" it is? As everyone knows, "every base is base 10", since every base number in its own numbering system is written as "10" (2 is 10 in binary, 16 is 10 in hex and so on). So that question could be in EVERY number system possible. I suppose the probability is then 1 over an infinite number of systems, then very unlikely, so I'd say (as 0 is not in the range of possible answers) the answer is 1. Which, incidentally, is also an acceptable answer for every system. If we want instead to take into account that Megan doesn't know what a 4 is, the possibilities are only base 2, 3 and 4. So the likeliness is 1/3, which corresponds anyway to 1 in those number systems. --108.162.229.31 14:05, 3 June 2014 (UTC)


It seems that the best answer to this question is 1.11111... because it approaches 10 in binary, and is very low in almost any other number system. 173.245.54.169 (talk) (please sign your comments with ~~~~)