Editing 1047: Approximations

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 22: Line 22:
 
The first part of the title text notes that "Jenny's constant," which is actually a telephone number referenced in Tommy Tutone's 1982 song {{w|867-5309/Jenny}}, is not only prime but a {{w|twin prime}} because 8675311 is also a prime. Twin primes have always been a subject of interest, because they are comparatively rare, and because it is not yet known whether there are infinitely many of them.  Twin primes were also referenced in [[1310: Goldbach Conjectures]].  
 
The first part of the title text notes that "Jenny's constant," which is actually a telephone number referenced in Tommy Tutone's 1982 song {{w|867-5309/Jenny}}, is not only prime but a {{w|twin prime}} because 8675311 is also a prime. Twin primes have always been a subject of interest, because they are comparatively rare, and because it is not yet known whether there are infinitely many of them.  Twin primes were also referenced in [[1310: Goldbach Conjectures]].  
  
The second part of the title text makes fun of the unusual mathematical operations contained in the comic.  {{w|Pi|π}} is a useful number in many contexts, but it doesn't usually occur anywhere in an exponent. Even when it does, such as with complex numbers, taking the πth root is rarely helpful.  A rare exception is an [http://gosper.org/4%5E1%C3%B7%CF%80.png identity] for the pi-th root of 4 discovered by Bill Gosper.  Similarly, {{w|e (mathematical constant)|e}} typically appears in the base of a power (forming the {{w|exponential function}}), not in the exponent. (This is later referenced in [http://what-if.xkcd.com/73/ Lethal Neutrinos]).
+
The second part of the title text makes fun of the unusual mathematical operations contained in the comic.  {{w|Pi|π}} is a useful number in many contexts, but it doesn't usually occur anywhere in an exponent. Even when it does, such as with complex numbers, taking the πth root is rarely helpful.  A rare exception is an [http://gosper.org/4%5E1%C3%B7%CF%80.png identity] for the pi-th root of 4 discovered by Bill Gosper.  Similarly, {{w|e (mathematical constant)|e}} typically appears in the basis of a power (forming the {{w|exponential function}}), not in the exponent. (This is later referenced in [http://what-if.xkcd.com/73/ Lethal Neutrinos]).
  
 
===Equations===
 
===Equations===

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)