Editing 1356: Orbital Mechanics

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 10: Line 10:
 
[[Randall]] roughly plots how high school physics, undergraduate-level physics and a job at {{w|NASA}} somewhat increased his knowledge of {{w|orbital mechanics}}. But this learning was apparently nothing compared to the "direct" experience of playing ''{{w|Kerbal Space Program}}'', a rocket building and piloting {{w|open world|sandbox game}}.
 
[[Randall]] roughly plots how high school physics, undergraduate-level physics and a job at {{w|NASA}} somewhat increased his knowledge of {{w|orbital mechanics}}. But this learning was apparently nothing compared to the "direct" experience of playing ''{{w|Kerbal Space Program}}'', a rocket building and piloting {{w|open world|sandbox game}}.
  
Orbital mechanics can be somewhat counterintuitive. The art of changing orbits involves relative velocities, positions, and times in complex interactions. As soon as you try deviating from a perfectly regular orbit, or start having to deal with {{w|N-body problem}}s and {{w|orbital resonance}}s, you have to coordinate your movements in possibly counterintuitive ways. One example is that if you want to reach an object ahead of you, on the same orbit, you actually have to 'brake' to reach a lower orbit. Once at that lower orbit, your angular velocity is faster, and you can start to overtake your target. After that manoeuver, you then have to accelerate to increase your orbital altitude again, which will end up reducing your angular speed so that you intercept your target.
+
Orbital mechanics can be somewhat counterintuitive. The art of changing orbits involves relative velocities, positions, and times in complex interactions. As soon as you try deviating from a perfectly regular orbit, or start having to deal with {{w|N-body problem}}s and {{w|orbital resonances}}, you have to coordinate your movements in possibly counterintuitive ways. One example is that if you want to reach an object ahead of you, on the same orbit, you actually have to 'brake' to reach a lower orbit. Once at that lower orbit, your angular velocity is faster, and you can start to overtake your target. After that manoeuver, you then have to accelerate to increase your orbital altitude again, which will end up reducing your angular speed so that you intercept your target.
  
 
At the title text Randall admits that at the time when he did work at NASA he was not involved in orbital mechanics—which is also true for most other NASA employees—but everybody was talking about this which in the end did increase his knowledge a little, as can be seen in the curve after the ''Job at NASA'' arrow.
 
At the title text Randall admits that at the time when he did work at NASA he was not involved in orbital mechanics—which is also true for most other NASA employees—but everybody was talking about this which in the end did increase his knowledge a little, as can be seen in the curve after the ''Job at NASA'' arrow.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)