2214: Chemistry Nobel

Explain xkcd: It's 'cause you're dumb.
Revision as of 07:04, 17 October 2019 by Lupo (talk | contribs) (Undo revision 181354 by 162.158.234.94 (talk) em... no... it is about the huge gap you see when you look at a periodic table + some smaller adjacent gaps in the original version (Ge,Ga))
Jump to: navigation, search
Chemistry Nobel
Most chemists thought the lanthanides and actinides could be inserted in the sixth and seventh rows, but no, they're just floating down at the bottom with lots more undiscovered elements all around them.
Title text: Most chemists thought the lanthanides and actinides could be inserted in the sixth and seventh rows, but no, they're just floating down at the bottom with lots more undiscovered elements all around them.

Explanation

Ambox notice.png This explanation may be incomplete or incorrect: Created by THE SOCIETY OF ANNOYING MENDELEEV. Standard wait time in progress.
If you can address this issue, please edit the page! Thanks.

The periodic table of the elements is a display which arranges all of the 118 (currently) known chemical elements by atomic number and sorts them into columns such that each column contains a group of elements displaying similar chemical properties. The original version of this table was developed by Russian chemist Dmitri Mendeleev in 1869, when he realized that certain properties repeated periodically as elements became more massive. Notably, this system left obvious gaps at the top of the table. Mendeleev correctly predicted that some of these gaps represented elements that had not been discovered yet, and even predicted their properties based on the patterns in the table. The later discovery of those elements (including germanium and gallium) helped validate Mendeleev's work. Other gaps, however, were not due to undiscovered elements, but merely resulted from the properties of electron orbitals in atoms: upper rows of the table represent orbitals with fewer possible electrons and hence fewer elements, so displaying the lower rows properly below the upper ones leaves gaps in the upper rows. In other words, elements could not actually exist in these spaces, spaces which only existed in the realm of human bookkeeping. The joke of this comic is that it treats these gaps as if they represented elements that hadn't been discovered yet. Ponytail and her team have won the Nobel Prize in Chemistry merely by looking for and finding these elements. She expresses surprise that no one else had thought of such a simple direction for research.

The lanthanides and actinides mentioned in the title text are series of elements with higher atomic numbers that have electrons in orbitals that no previous elements have, and thus occupy columns of the periodic table that don't exist for lower-numbered elements. Sometimes these elements are displayed in the table, a format that corresponds with their actual orbital structure; this format is too wide for most display media, thus the lanthanides and actinides are separated out and displayed "floating" beneath the rest of the periodic table. The title text jokes that these floating series of elements are actually surrounded by actual elements.

In real life, the 2019 Nobel Prize in Chemistry was awarded to John B. Goodenough, M. Stanley Whittingham, and Akira Yoshino for their work in the development of lithium-ion batteries; it was announced on October 9, just a few days before this comic was published, so the chemistry Nobel Prize was in the news.

Transcript

[Ponytail stands in front of an image with a white section in the shape of the 7 rows of the periodic table of the elements, but without the two rows usually shown beneath with the lanthanides and actinides. The “empty” sections at the top of the table are filled with three rows of dotted boxes, 16 boxes in the top row and two rows with 10 boxes each, shifted one right from the top row. Ponytail points to this area with a pointer while she looks and gestures towards an off-panel audience.]
Ponytail: I don't know why no one else thought to look here.
[Caption below the panel]:
The 2019 Nobel Prize in Chemistry went to the team that discovered the elements in the big gap at the top of the periodic table.


comment.png add a comment! ⋅ comment.png add a topic (use sparingly)! ⋅ Icons-mini-action refresh blue.gif refresh comments!

Discussion

No Discussion yet? REALLY?!!? 162.158.214.82 15:23, 12 October 2019 (UTC)

This may be a reference to SCP-2046. 162.158.146.34 15:40, 12 October 2019 (UTC)

Or something else. From the beginning, what are the ten radical isotopes? -- Hkmaly (talk) 21:36, 12 October 2019 (UTC)

Couldn't this potentially involve exotic isotopes of hydrogen that behave similarly to elements in the same group? --162.158.214.136 16:02, 12 October 2019 (UTC)

Oh gods, I needed this laugh. Have my Chemistry exam on Monday, this does put a smile on my face.

"misconception that the empty space at the top of the periodic table represents undiscovered elements"... [citation needed]. Is that really a thing? Never heard of it. Ralfoide (talk) 16:53, 12 October 2019 (UTC)

Somehow I did not think about that the entire time I was editing this thing, because I don’t believe it is. I guess I’ll fix it. 172.69.34.56 18:32, 12 October 2019 (UTC)
I guess my point, if I had any, is that I have a hard time believing there's such a "misconception" to begin with in real life. Of course, there is in Randall's strip universe, which is what makes the joke work in his usual out-of-this-world humor. Ralfoide (talk) 07:40, 13 October 2019 (UTC)

Some uninvited pedantry (unlike all my other didactic discourse here, which you guys bring on yourselves): Referenced in the comic is not THE periodic table, just a periodic table. And it isn't really objectively scientific. It's better to call it the most popular periodic table. Such tables are a rather ham-handed attempt to explain the patterns of the elements in an "intuitive" (or at least heuristic) way. But the popular one we learn in school is actually far from the best one even in that sense. Check out the alternatives, many of which are more scientifically sound and logical...but aren't as simplistic for the easy-minded, so they haven't caught on. —Kazvorpal (talk) 23:37, 12 October 2019 (UTC)

Do you mean the one that looks like a candyland board game (Benfey's) or the one that looks like the worst Tetris level ever (Tsimmerman's)? [j/k]... If I had seen that in school, I'd have been too distracted to ever pay attention ;-) Ralfoide (talk) 07:35, 13 October 2019 (UTC)
A very interesting link. Thanks! Yosei (talk) 12:41, 2 December 2019 (UTC)

Did Mendeleev really design his table to represent the way electrons are arranged in atoms? In 1869, he must have been quite a visionary! Zetfr 09:23, 13 October 2019 (UTC)

Oh no, he didn't. He did by patterns of their properties. Also by atomic weights, but those were imprecisely known then, also note the isotope paradox problem (e.g. K and Ar must be swapped). The first sorting already guarantess to represent the electronic arrangement to some degree. BTW, lanthanides and actinides need more love. For starters, I PhD'ed on them.
Actually he was quite the visionary, considering what they didn't know back then. While everybody else was arranging their tables (and there were plenty of them) entirely by atomic weight, he arranged them by both atomic weight on the large scale and chemical valence on the small scale. This clued him in to the changing periods and also enabled him to correct elements out of order by weight. The noble gases hadn't been discovered yet, but when they were, they fit right in as they had a valence of zero. A few decades later Henry Mosely used proton bombardment and X-Ray radiation measurement to determine the electrostatic properties of various elements and found a simple progression that both absolutely vindicated Mendeleev and introduced the concept of Atomic Number. He should have gotten a Nobel prize, but sadly, no prizes were awarded that year because of the war and Mosely himself was killed at the young age of 27 by a bullet with his name on it. Sigh.

172.69.55.22 15:20, 13 October 2019 (UTC)

Clearly these new elements are fractional elements, with elements having - for instance - 1 3/16 protons, etc. 108.162.241.248 21:20, 13 October 2019 (UTC)

Of course, if someone did find a whole bunch of elements there, I'd say that they deserve a Nobel prize. 172.69.63.133 12:37, 14 October 2019 (UTC)

for me, the explanation provided doesn't seem to emphasize why the joke works well enough. shouldn't the explanation more clearly state that the gap between hydrogen and helium is there because the table is grouped based on blocks of elements and electron orbits. the first row only has electrons in the s orbital and none in p, d or f orbitals, and that gaps between hydrogen and helium, for example, could not possibly be filled because there isn’t anything to fill them with. similarly for the 2nd and 3rd row "gaps". this impossibility really begets the humor of a figure pointing at the gap musing "i don't know why no one else thought to look here".



In Russian books on chemistry, elements are numbered, ordered in the same way, yet the table itself is arranged in a different manner: in R20, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4 way. It, however, is done to make both the table + all the extra data on each element rectangular (so it would fit into one A4 sheet).172.68.11.67 05:14, 20 March 2021 (UTC)