Editing 2317: Pinouts

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 179: Line 179:
 
| Boobytrap Pin (Pure solder)
 
| Boobytrap Pin (Pure solder)
 
| {{w|Solder}} is a metal alloy with a low melting temperature (typically around 360°C, but in special cases melting points between 90°C and 450°C or above are available), used to bond electronic components together permanently. Most solder materials are quite ductile so it might be too easy for the forces a connector is subject to to permanently change their shape. Along with the fact that the resistance of solder is typically way higher than that for copper the pin under heavy electrical stress could overheat and melt, thus bonding the connector to its receptacle, and thereby "trapping" the receptacle. Additionally putting a pin that might slightly change their shape directly next to a high voltage pin means risking accidentally connecting two power rails with entirely different voltages together (causing an overvoltage in the lower-voltage rail that is likely to break the circuit, as has happened with some Apple devices). In this case the +120V AC pin might be able to deliver enough power to actually fuse the solder-only pin. This could also be a reference to increasing publicity around the fields of electronics security: hobby reverse engineers have been finding ways for some time now to evade the blown fuses in microcircuitry preventing them from being reprogrammed, using glitching techniques.
 
| {{w|Solder}} is a metal alloy with a low melting temperature (typically around 360°C, but in special cases melting points between 90°C and 450°C or above are available), used to bond electronic components together permanently. Most solder materials are quite ductile so it might be too easy for the forces a connector is subject to to permanently change their shape. Along with the fact that the resistance of solder is typically way higher than that for copper the pin under heavy electrical stress could overheat and melt, thus bonding the connector to its receptacle, and thereby "trapping" the receptacle. Additionally putting a pin that might slightly change their shape directly next to a high voltage pin means risking accidentally connecting two power rails with entirely different voltages together (causing an overvoltage in the lower-voltage rail that is likely to break the circuit, as has happened with some Apple devices). In this case the +120V AC pin might be able to deliver enough power to actually fuse the solder-only pin. This could also be a reference to increasing publicity around the fields of electronics security: hobby reverse engineers have been finding ways for some time now to evade the blown fuses in microcircuitry preventing them from being reprogrammed, using glitching techniques.
 
Another issue is that the heat required for anyone to solder a wire to the cable-side of that pin would cause the entire pin to melt and coagulate, triggering the boobytrap, and causing the pin to disappear and possibly make a mess next to the other pins.
 
 
| A9
 
| A9
 
| VBUS (+5V)
 
| VBUS (+5V)

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)