Editing 2497: Logic Gates

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 90: Line 90:
 
|-
 
|-
 
|NORXONDOR Gorgonax
 
|NORXONDOR Gorgonax
โˆ’
|Two inputs lead into a (N)OR-like entry, the continuing sides of which repurpose as connectors leading through a pair of full anti-parallel NOT gates, before resuming drawn purpose as a NOR-gate output tip.
+
|Two inputs lead into a (N)OR-like entry, the continuing sides of which repurpose as connectors leading through a pair of full anti-parallel NOT gates, before resuming drawn purpose as a NOR-gate output tip. man this is cringe brooooooo
  
 
It is possible the peculiarly placed NOTs are acting as indications of some kind of two-way signal filter/rectifier, if they were to be taken seriously.
 
It is possible the peculiarly placed NOTs are acting as indications of some kind of two-way signal filter/rectifier, if they were to be taken seriously.
Line 101: Line 101:
 
A double-NOT on an input would produce the identical output again (...if the input is '''not not''' true). Two NOTs preapplied to a (N)AND or (N)OR would produce the same output as a (further-)NOTed version of the (N)OR or (N)AND, conversely (...if '''not'''-1 '''and''' '''not'''-2 then this also means that neither 1 '''nor''' 2). Normally this would be shown, if necessary, as full NOT gates on the lead-in inputs but (see Transcript, below, and the NORG XORT description above) the shortcut element is occasionally used in further mix'n'match symbology (together with reinterpreting connectivity lines as partial shape-edges and vice-versa) in 'understandable' but definitely non-standard ways.
 
A double-NOT on an input would produce the identical output again (...if the input is '''not not''' true). Two NOTs preapplied to a (N)AND or (N)OR would produce the same output as a (further-)NOTed version of the (N)OR or (N)AND, conversely (...if '''not'''-1 '''and''' '''not'''-2 then this also means that neither 1 '''nor''' 2). Normally this would be shown, if necessary, as full NOT gates on the lead-in inputs but (see Transcript, below, and the NORG XORT description above) the shortcut element is occasionally used in further mix'n'match symbology (together with reinterpreting connectivity lines as partial shape-edges and vice-versa) in 'understandable' but definitely non-standard ways.
  
โˆ’
Along with the deliberate confusion of connector and shape-edge lines, directionality is also played with in several cases, with input 'ends' perhaps also at the (implied) output end and reversed sub-symbols implying a composite gate with substructural feedback or perhaps diode-rectification upon a bidirectional logic path.  
+
Along with the deliberate confusion of connector and shape-edge lines, directionality is also played with in several cases, with input 'ends' perhaps also at the (implied) output end and reversed sub-symbols implying a composite gate with substructural feedback or perhaps diode-rectification upon a bidirectional logic path.
 +
 
  
  

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)