Difference between revisions of "849: Complex Conjugate"

Explain xkcd: It's 'cause you're dumb.
Jump to: navigation, search
m
(Rewritten and marked as incomplete.)
Line 8: Line 8:
  
 
==Explanation==
 
==Explanation==
This comic is a joke on the common phrase "Shit just got ''real''", meaning that something has suddenly increased in difficulty so it is now a real challenge. [[Cueball]] is standing in front of a board delivering a lesson, and is about to multiply a wavefunction by its complex conjugate. In mathematics, a complex number has a real part (a) and an imaginary part (b*the {{w|imaginary unit}}). The number can be written as a+b{{i}}. The complex conjugate of a number (a+b{{i}}) is a–b{{i}}. When one multiplies a complex number and its conjugate, the result is (a+b{{i}})(a–b{{i}}), which is a<sup>2</sup>–(b{{i}})<sup>2</sup> = a<sup>2</sup>–b<sup>2</sup>{{i}}<sup>2</sup>. The imaginary unit {{i}} is defined as "the square root of –1", hence {{i}}<sup>2</sup>=–1.
+
{{incomplete|The Schrodinger wave equation needs explaining.}}
  
This process yields a result of (a<sup>2</sup>+b<sup>2</sup>) that does not have an imaginary part, making it a ''real'' number, which is a play on the aforementioned phrase. Accordingly, Cueball dictates that the people who are not skilled enough should leave.
+
This comic is a joke on the phrase "Shit just got real", which means "something has suddenly increased in difficulty and become genuinely challenging or dangerous".
  
The title text states that if you joke about this every time it's applicable, that will be annoying enough that the class will ditch you and attempt to take place in another room.
+
[[Cueball]] is standing in front of a board delivering a lesson, and is about to multiply a wavefunction by its complex conjugate. A {{w|wave function}} is a mathematical description of a quantum system which uses {{w|complex number|complex}} values - numbers that have both a {{w|real number|real}} part and an {{w|imaginary number|imaginary}} part.
 +
 
 +
Complex numbers are written in the form <math>a + bi</math>, where <math>a</math> is the real part and <math>bi</math> is the imaginary part. <math>i</math> is the imaginary unit, defined to be the square root of <math>-1</math>.
 +
 
 +
The {{w|complex conjugate}} of a complex number simply reverses the sign on the imaginary part - so for the number above, the complex conjugate is <math>a - bi</math>.
 +
 
 +
Multiplying the complex number by its own complex conjugate therefore yields <math>(a + bi)(a - bi)</math>. If you multiply out the brackets, you get <math>a^2 + abi - abi - b^2i^2</math>. The <math>abi</math> cancel each other out, and because <math>i = \sqrt{-1}</math>, this means that <math>i^2</math> is simply <math>-1</math>.
 +
 
 +
Thus, the result is <math>a^2 + b^2</math>; the imaginary part has completely disappeared, leaving nothing but a real number, so "shit has got real" as Cueball promised.
 +
 
 +
The title text notes that you can make this joke in class every time a calculation is performed that drops the imaginary part from a complex number, but warns that it would be so annoying that the professor will eventually find a way to have the class without you in it.
 +
 
 +
The wave function shown on Cueball's board is the {{w|Schrödinger_equation|time-dependent Schrödinger equation}} <math>i\hbar\dfrac{\partial}{\partial t} = \hat{H}\Psi (x,t)</math>
  
 
==Transcript==
 
==Transcript==

Revision as of 13:36, 7 January 2020

Complex Conjugate
Fun fact: if you say this every time a professor does something to a complex-number equation that drops the imaginary part, they'll eventually move the class to another room and tell everyone else except you.
Title text: Fun fact: if you say this every time a professor does something to a complex-number equation that drops the imaginary part, they'll eventually move the class to another room and tell everyone else except you.

Explanation

Ambox notice.png This explanation may be incomplete or incorrect: The Schrodinger wave equation needs explaining.
If you can address this issue, please edit the page! Thanks.

This comic is a joke on the phrase "Shit just got real", which means "something has suddenly increased in difficulty and become genuinely challenging or dangerous".

Cueball is standing in front of a board delivering a lesson, and is about to multiply a wavefunction by its complex conjugate. A wave function is a mathematical description of a quantum system which uses complex values - numbers that have both a real part and an imaginary part.

Complex numbers are written in the form a + bi, where a is the real part and bi is the imaginary part. i is the imaginary unit, defined to be the square root of -1.

The complex conjugate of a complex number simply reverses the sign on the imaginary part - so for the number above, the complex conjugate is a - bi.

Multiplying the complex number by its own complex conjugate therefore yields (a + bi)(a - bi). If you multiply out the brackets, you get a^2 + abi - abi - b^2i^2. The abi cancel each other out, and because i = \sqrt{-1}, this means that i^2 is simply -1.

Thus, the result is a^2 + b^2; the imaginary part has completely disappeared, leaving nothing but a real number, so "shit has got real" as Cueball promised.

The title text notes that you can make this joke in class every time a calculation is performed that drops the imaginary part from a complex number, but warns that it would be so annoying that the professor will eventually find a way to have the class without you in it.

The wave function shown on Cueball's board is the time-dependent Schrödinger equation i\hbar\dfrac{\partial}{\partial t} = \hat{H}\Psi (x,t)

Transcript

[Cueball is standing at a whiteboard covered in equations, one of which is the time dependent Schrodinger equation.]
Cueball: Okay, anyone who's feeling like they can't handle the physics here should probably just leave now.
Cueball: Because I'm multiplying the wavefunction by its complex conjugate.
Cueball: That's right.
[Dramatic zoom. It appears Cueball is writing on the side of the panel.]
Cueball: Shit just got real.


comment.png add a comment! ⋅ comment.png add a topic (use sparingly)! ⋅ Icons-mini-action refresh blue.gif refresh comments!

Discussion

Actually multiplying complex number (x + iy) by its complex conjugate (x - iy) does not "remove" imaginary part, but calculate square of absolute value of complex number, (x^2 + y^2). BTW. in quantum physics the wavefunction is complex valued, and its absolute value is probability density (a real valued function). --JakubNarebski (talk) 00:57, 18 December 2012 (UTC)

I got hit in the face with my complex conjugate and lost an eye. 108.162.238.114 (talk) (please sign your comments with ~~~~)

I procreated with my complex conjugate and lost myself. 108.162.216.114 19:44, 12 August 2014 (UTC)

(a+bi)*(a-bi)= a^2-b^2 not a^2+b^2 108.162.218.142 15:48, 24 June 2015 (UTC)

(a+b)*(a-b) = a^2 - b^2 . However (a+bi)*(a-bi) = a^2 + b^2 since i^2 = -1. 108.162.219.65 (talk) (please sign your comments with ~~~~)

I think that the moving to a title text is a joke about them kicking you out of the room 173.245.50.65 20:54, 1 May 2016 (UTC)

Is it relevant that when he performs the complex conjugate multiplication, we go from a 2d image of the board to a 1d image of the board? My thinking is, that complex numbers are often used to describe a set of coordinates in 2d space. 162.158.158.233 (talk) 06:58, 14 January 2020 (please sign your comments with ~~~~)

It might be a nice coincidence, or happened on purpose. However in my understanding and the usecases I've seen for example in electrical engineering, it was the other way round. Complex Numbers were used to describe something , e.g. phase shift, and then it could be visualized as coordinates where it was visible as a sinus-curve. (I Might be slightly wrong about the details here. It's been some time...) --Lupo (talk) 07:18, 14 January 2020 (UTC)

What's with that red text? Is that MML? ⟨Winter is coming⟩ Marethyu (talk) 21:27, 5 May 2022 (UTC)

Everyone immediately recognised how the product of a complex function with its conjugate "makes shit real" but I think there's another layer of comedy (in a sort of anti-joke way) where the complex conjugate of a real number (a+0i) is (a-0i) in other words the product of an entirely real-valued function and its complex conjugate would just be its square which is an anticlimactic turn on the joke. 172.70.93.13 15:13, 31 August 2022 (UTC)