Editing Talk:138: Pointers

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 4: Line 4:
  
 
Or perhaps the Black Hat <u>is</u> answering the question but in an obscure way. The addresses might be pointing to the locations where the game keeps its important information (such as the score count or the level), so it can be cheated by changing the data at these locations.  
 
Or perhaps the Black Hat <u>is</u> answering the question but in an obscure way. The addresses might be pointing to the locations where the game keeps its important information (such as the score count or the level), so it can be cheated by changing the data at these locations.  
βˆ’
:Ok I understand that it is etiquette not to edit other people's comments, but he wanted to underline 'is' so I did it for him :) [[User:Beanie|Beanie]] ([[User talk:Beanie|talk]]) 11:04, 17 March 2021 (UTC)
+
 
 
The problem with 0x-1 is not that it's missing digits, it's that the memory in the computer is represented as a closed loop. So if you try to go back to the cell "before the first cell", you will really access the last cell, 0x-1 really equals to 0xFFFFFFFF in the 32-bit address space. Evidently, Cueball had found a way around this only it didn't quite work out. (People deeply interested in the workings of the pointers should also read about the memory protection modes and alignment requirements, both of which might interfere with reading from the address 0xFFFFFFFF.) [[Special:Contributions/108.162.246.5|108.162.246.5]] 00:33, 28 January 2014 (UTC)
 
The problem with 0x-1 is not that it's missing digits, it's that the memory in the computer is represented as a closed loop. So if you try to go back to the cell "before the first cell", you will really access the last cell, 0x-1 really equals to 0xFFFFFFFF in the 32-bit address space. Evidently, Cueball had found a way around this only it didn't quite work out. (People deeply interested in the workings of the pointers should also read about the memory protection modes and alignment requirements, both of which might interfere with reading from the address 0xFFFFFFFF.) [[Special:Contributions/108.162.246.5|108.162.246.5]] 00:33, 28 January 2014 (UTC)
  

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: