Talk:2320: Millennium Problems
Ironically, Randall misspells Perelman as "Perlman" in the comic but spells it correctly in the alt-text.
172.69.63.147 02:56, 16 June 2020 (UTC)
- Perhaps he meant Perlman the Perl-programming superhero? ;) 162.158.123.145 03:33, 16 June 2020 (UTC)
There has been some controversy over the millennium prizes, given that in mathematics important results are often a product of the work of different mathematicians who are not necessarily close associates. Perelman reportedly believed that his work was a corollary to prior work by Richard S. Hamilton.
I think the idea of this comic is an extension to a question, which I've seen before in this discussion, "what if person A shows that 2 millennium problems are equivalent, and then person B proves one of them?" Should person B get both prizes, or should person A get one of them? It is easy to think of situations where it is hard to know who deserves the credit, and I think this comic takes that to a logical exteme. Probably not Douglas Hofstadter (talk) 03:59, 16 June 2020 (UTC)
The Wikipedia article for Grigori Perelman states the following: "The Clay Institute subsequently used Perelman's prize money to fund the 'Poincaré Chair', a temporary position for young promising mathematicians at the Paris Institut Henri Poincaré.", so no funding would be available for Randall's eighth prize. 162.158.74.61 04:21, 16 June 2020 (UTC)
By process of elimination, the matrix and the equation should represent Yang-Mills and P=NP, but which is which? The 4x4 matrix could represent the 4D unitary transformation from Yang-Mills? The equation seems to say 'Ar + (squiggles)' but I can't think of any complexity problems that might take this form. --Quantum7 (talk) 06:35, 16 June 2020 (UTC)
Is "millennium problems" also a pun on "millennial problems", i.e. those issues which seem straightforward to adults but baffle the younger generation (the "millennials")? See for example comic 2165. --188.114.102.48 00:48, 17 June 2020 (UTC)
The image is projected by a projector on the ground that Cueball is apparently standing in the way of, but there's no Cueball-shaped shadow on the projected image. 108.162.219.192 (talk) (please sign your comments with ~~~~)
- "there's no Cueball-shaped shadow on the projected image." - of course not! Cueball is clearly constructed from lines - which (of course) have no width and therefore zero area and as a consequence, cannot obstruct any photons to cause a shadow to form. 172.69.70.213 02:13, 17 June 2020 (UTC)
It is clearly Randall that makes this presentation based on the caption. Have added this to the explanation and transcript --Kynde (talk) 09:32, 17 June 2020 (UTC)
Regarding [1], could a professional number theorist please opine on the proof? And for that matter, is Peano arithmetic inconsistency that bad? If so, is it bad on the scale of 2020? I mean, if there are so many things equivalent to Peano arithmetic, then maybe one of them with a very slight change is consistent? 162.158.107.17 09:55, 17 June 2020 (UTC)