Editing Talk:2529: Unsolved Math Problems

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 50: Line 50:
 
:I'm sure I've seen components of the cursed-curve, not sure if they fit together like that, easily, though. The differentiation of dy/dt (which is odd in itself) of the first (lower) bit looks discontinuous, followed by a chaotic oscilation (may just be the culmination of the less frenetic chaos that created the first set of x=f(y) - again, an unusual way round) that then settles into a pattern where ''regardless'' of the 'prime axis', you have multiple real roots on the other, towards some great-attractor value.
 
:I'm sure I've seen components of the cursed-curve, not sure if they fit together like that, easily, though. The differentiation of dy/dt (which is odd in itself) of the first (lower) bit looks discontinuous, followed by a chaotic oscilation (may just be the culmination of the less frenetic chaos that created the first set of x=f(y) - again, an unusual way round) that then settles into a pattern where ''regardless'' of the 'prime axis', you have multiple real roots on the other, towards some great-attractor value.
 
: In more standard x/y (or y=f'(x)?) notation, it is clear that there are multiple real roots for various values of x within a range, and possible none at all beyond that (or it's a plotting error insofar as x tends to ±infinity it has a very narrow range of y that is never sampled properly, but should connect to that pulse 'randomness'). If it's a plot of real vs imaginary components of a complex function to a different continuous value, I suspect someone is playing silly-buggers with multiple (perhaps nested?) trigonometric functions, polynomials and variable-shifted powers. But it's nearly thirty years since I did mathematics at the level needed to disentangle this neatly (back when Mandelbrots and Julias were still a staple wall-poster for any student not more into the likes of Iron Maiden skull-motifs or <insert your favourite classic film here>, and even then it might be) so don't ask me where to start. [[Special:Contributions/162.158.89.140|162.158.89.140]] 16:48, 17 October 2021 (UTC)
 
: In more standard x/y (or y=f'(x)?) notation, it is clear that there are multiple real roots for various values of x within a range, and possible none at all beyond that (or it's a plotting error insofar as x tends to ±infinity it has a very narrow range of y that is never sampled properly, but should connect to that pulse 'randomness'). If it's a plot of real vs imaginary components of a complex function to a different continuous value, I suspect someone is playing silly-buggers with multiple (perhaps nested?) trigonometric functions, polynomials and variable-shifted powers. But it's nearly thirty years since I did mathematics at the level needed to disentangle this neatly (back when Mandelbrots and Julias were still a staple wall-poster for any student not more into the likes of Iron Maiden skull-motifs or <insert your favourite classic film here>, and even then it might be) so don't ask me where to start. [[Special:Contributions/162.158.89.140|162.158.89.140]] 16:48, 17 October 2021 (UTC)
 
To me the curve in panel three looks like a cursed (ha) mixture of an oscillatory time responses of dynamic systems with either an Nquist plot or simply trajectories of eigenvalues (of a stable system) at the end. Links: https://en.wikipedia.org/wiki/Nyquist_stability_criterion#Nyquist_plot  , https://electronicscoach.com/time-response-of-second-order-system.html  https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors [[User:Domi|Domi]] ([[User talk:Domi|talk]])Domi
 
 
  
 
Are there any examples of "cursed" math problems? I've seen "weirdly abstract" and "weirdly concrete" ones, but not "cursed" ones. [[Special:Contributions/162.158.63.117|162.158.63.117]] 01:03, 17 October 2021 (UTC)
 
Are there any examples of "cursed" math problems? I've seen "weirdly abstract" and "weirdly concrete" ones, but not "cursed" ones. [[Special:Contributions/162.158.63.117|162.158.63.117]] 01:03, 17 October 2021 (UTC)

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Template used on this page: