Editing Talk:2626: d65536

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 5: Line 5:
 
:Definitely possible, just create two identical right pyramids with a 32768-gon base and glue the bases together.  [[User:Clam|Clam]] ([[User talk:Clam|talk]]) 23:53, 30 May 2022 (UTC)
 
:Definitely possible, just create two identical right pyramids with a 32768-gon base and glue the bases together.  [[User:Clam|Clam]] ([[User talk:Clam|talk]]) 23:53, 30 May 2022 (UTC)
 
: Would this design be fair? Consider a set of 256 lines of latitude overlapping another set, with the second set's polar axis at the equator of the first. Cut flat quadrangles between the intersection points of the lines of latitude. Doesn't use hexagons like the comic does though. [[Special:Contributions/172.70.110.121|172.70.110.121]] 09:41, 31 May 2022 (UTC)
 
: Would this design be fair? Consider a set of 256 lines of latitude overlapping another set, with the second set's polar axis at the equator of the first. Cut flat quadrangles between the intersection points of the lines of latitude. Doesn't use hexagons like the comic does though. [[Special:Contributions/172.70.110.121|172.70.110.121]] 09:41, 31 May 2022 (UTC)
:: Fairness is a given for pyramids (if that's what you're asking). As long as there's enough 'rolling energy' to get either of the pyramids 'facing up', any N-agon base to the pyramids should have enough indeterminate impetous to then finally roll around a bit to end up with any of those exposed faces on top.
+
:: Fairness is a given for pyramids (if that's what you're asking). As long as there's enough 'rolling energy' to get either of the pyramids 'facing up', any N-agon base to the pyramids should have enough indeterminate impetous to then finally roll around a bit to end up with any of those exposed faces on top ::(Interesting to note that for odd-numbered N-agonal bases, like that in a D10, you need to offset the bases and instead of sticking to the triangular faces base-to-base you now have kite-shapes that interlock in a serration that is no longer strictly planar along the axis's perpendiculars.)
::(Interesting to note that for odd-numbered N-agonal bases, like that in a D10, you need to offset the bases and instead of sticking to the triangular faces base-to-base you now have kite-shapes that interlock in a serration that is no longer strictly planar along the axis's perpendiculars.)
 
 
::That might need a selection of the pyramidal slope. A very wide pair of bases with very little tip-'elevation' (to fit tightly within an oblate spheroid) should transition very well between same-pyramid faces, like a bulgy button, but one with highly acute tip-angle (prolate, likewise) might find the dominant behaviour to be tip-to-tip tipping, more like a toggle-fastener. OTOH, for odd-numbered end-agons it would probably ratchett to subsequent sides as it tips back and forth so long as it has enough energy to it.
 
::That might need a selection of the pyramidal slope. A very wide pair of bases with very little tip-'elevation' (to fit tightly within an oblate spheroid) should transition very well between same-pyramid faces, like a bulgy button, but one with highly acute tip-angle (prolate, likewise) might find the dominant behaviour to be tip-to-tip tipping, more like a toggle-fastener. OTOH, for odd-numbered end-agons it would probably ratchett to subsequent sides as it tips back and forth so long as it has enough energy to it.
 
::If you're asking about lines of latitude intersecting, consider that near the poles of either latitudinal reference the division of the other reference-system is going to be spliced more irregularly and thus give varying degrees of stability to rest upon.
 
::If you're asking about lines of latitude intersecting, consider that near the poles of either latitudinal reference the division of the other reference-system is going to be spliced more irregularly and thus give varying degrees of stability to rest upon.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)