Talk:2659: Unreliable Connection

Explain xkcd: It's 'cause you're dumb.
Revision as of 01:00, 16 August 2022 by 172.70.211.88 (talk) (Not discussion of comic or explanation)
Jump to: navigation, search


I don’t think this has anything to do with teleconferencing. Am I missing something? 172.70.214.81 22:46, 15 August 2022 (UTC)

Yes. The impliction is that people are expecting you to be available for online communications, and you can use the unreliable Internet connection as an excuse to get out of it. Barmar (talk) 22:51, 15 August 2022 (UTC)
I think it's more about communication in general. He doesn't want anybody calling him or sending him emails, so by saying he has an "unreliable" connection people might assume it will be hard to get in touch with him.
Back in the day, email was usually configured so that it could easily overcome such unreliability, and it's still doable,[1] but today email for most people is a web or local client-server app, as opposed to a local mail store in a peer-to-peer app. Even people in urban areas can suffer unreliable internet, when squirrels or backhoes gnaw through data cables, copper theives strike, or 5G mind control base stations are congested. 172.70.210.143 23:45, 15 August 2022 (UTC)

According to a PhET simulator (https://phet.colorado.edu/sims/html/plinko-probability/latest/plinko-probability_en.html) for this situation, the ideal standard deviation is 1.732 and ideal mean is 6. I don’t feel like doing the calculations :P 172.70.211.134 23:34, 15 August 2022 (UTC)

If we assume 50-50 for each bounce, the probability that internet is off will be about (11 choose 3)/(2^11), or 8%.--Account (talk) 23:51, 15 August 2022 (UTC)

To whomever did [2], doesn't [3] prove that symmetrical configurations nearly identical to those shown can produce uniform distributions? They seem to show it's just a matter of horizontal pin spacing. However, I for one can not verify the proof, which uses unusual (novel?) non-Unicode math notation, and a fairly opaque method of proof. 172.70.211.134 00:07, 16 August 2022 (UTC)

What is the chance that the ball will bounce off the first pin, go down the outside of the pins and miss all the switches?

Probably quite high if it's a bouncy ball. With idealized physics though it'd just hit the leftmost/rightmost switch. 172.70.254.127 00:45, 16 August 2022 (UTC)

I would describe the device as a https://en.wikipedia.org/wiki/Galton_board. 172.70.230.109 00:30, 16 August 2022 (UTC)