Editing 2529: Unsolved Math Problems

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 15: Line 15:
  
 
*'''Euler field:''' An Euler vector field represents a space where every point is rotating with its own speed and direction. The name "Euler field", however, is something like "John Smith" - fields are very common algebraic structures, and {{w|Leonard Euler}} was a prolific Swiss mathematician who influenced {{w|List_of_things_named_after_Leonhard_Euler|so many areas of study}} that some of his discoveries are named after whoever wrote about them next, just to avoid naming everything after him.
 
*'''Euler field:''' An Euler vector field represents a space where every point is rotating with its own speed and direction. The name "Euler field", however, is something like "John Smith" - fields are very common algebraic structures, and {{w|Leonard Euler}} was a prolific Swiss mathematician who influenced {{w|List_of_things_named_after_Leonhard_Euler|so many areas of study}} that some of his discoveries are named after whoever wrote about them next, just to avoid naming everything after him.
*'''{{w|Manifold}}:''' A manifold is a topological space which is locally Euclidean - the shortest distance between two points is a straight line, the ratio between a circle's circumference and diameter is always pi, parallel lines are always the same distance apart, everything generally behaves the way you'd expect. A globe is a two-dimensional manifold, because a small-enough area is indistinguishable from a flat map. Using manifolds as an example of impenetrably occult maths may be a nod to the Tom Lehrer song "Lobachevsky", which makes a similar joke about "the analytical algebraic topology of locally Euclidean metrizations of infinitely differentiable Riemannian manifolds (Bozhe moi!)".
+
*'''{{w|Manifold}}:''' A manifold is a topological space which is locally Euclidean - the shortest distance between two points is a straight line, the ratio between a circle's circumference and diameter is always pi, parallel lines are always the same distance apart, everything generally behaves the way you'd expect. A globe is a two-dimensional manifold, because a small-enough area is indistinguishable from a flat map. Using manifolds as an example of impenetrably occult maths may be a nod to the Tom Lehrer song "Lobachevsky", which makes a similar joke about "the analytical algebraic topology of locally Euclidean metrizations of infinitely differentiable Riemannian manifolds (bozhe moi!)".
 
*'''{{w|Hypergroup}}:''' An ''algebraic structure'', like arithmetic, is a set of well-defined operations (addition, subtraction, multiplication, division) mapping inputs to outputs over a domain of elements (the real numbers). A ''hyperstructure'' is an algebraic structure including an operation that maps a single input to multiple outputs - the simplest example is the square root, which maps a positive number like 4 to both positive and negative 2. A ''hypergroup'' is a hyperstructure with an operation that takes a pair of input elements, and, depending on which pair, can output every element or combination of elements in its domain... but also preserves association (1 + 2 + 3 = 6 whether you start by adding 1 + 2 or 2 + 3) and reproduction (if either input is "the entire domain", then the output will still be the entire domain). It's a decent indication of how abstract a hypergroup is that it takes at least three to five sub-definitions to make it remotely understandable.
 
*'''{{w|Hypergroup}}:''' An ''algebraic structure'', like arithmetic, is a set of well-defined operations (addition, subtraction, multiplication, division) mapping inputs to outputs over a domain of elements (the real numbers). A ''hyperstructure'' is an algebraic structure including an operation that maps a single input to multiple outputs - the simplest example is the square root, which maps a positive number like 4 to both positive and negative 2. A ''hypergroup'' is a hyperstructure with an operation that takes a pair of input elements, and, depending on which pair, can output every element or combination of elements in its domain... but also preserves association (1 + 2 + 3 = 6 whether you start by adding 1 + 2 or 2 + 3) and reproduction (if either input is "the entire domain", then the output will still be the entire domain). It's a decent indication of how abstract a hypergroup is that it takes at least three to five sub-definitions to make it remotely understandable.
 
*'''Isomorphic:''' {{w|Isomorphism}} describes whether all the attributes of one structure can be mapped to properties of another structure. The structures usually have to be of the same type; it is unclear how a hypergroup would map to a "conjection".
 
*'''Isomorphic:''' {{w|Isomorphism}} describes whether all the attributes of one structure can be mapped to properties of another structure. The structures usually have to be of the same type; it is unclear how a hypergroup would map to a "conjection".

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)