Editing Talk:2682: Easy Or Hard

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 30: Line 30:
  
 
I got 2.125*10^-17 m/s^2, or 3.18*10^-18 N, for the gravitational force/acceleration from the Eiffel Tower on a baseball on Fenway Park. Someone might want to check my calculations, though.--[[User:Account|Account]] ([[User talk:Account|talk]]) 23:42, 7 October 2022 (UTC)
 
I got 2.125*10^-17 m/s^2, or 3.18*10^-18 N, for the gravitational force/acceleration from the Eiffel Tower on a baseball on Fenway Park. Someone might want to check my calculations, though.--[[User:Account|Account]] ([[User talk:Account|talk]]) 23:42, 7 October 2022 (UTC)
: How did you get those numbers? I was trying to figure it out (for shits and giggles), but I got a different number. What equations/calculations did you use? --[[Special:Contributions/72.138.76.186|72.138.76.186]] 14:04, 11 October 2022 (UTC)
 
 
: It occurred to me that the Boston to Paris gravity question might not be quite as easy as it seems, since the relevant distance would be not “as the crow flies,” but more “as the mega-gopher digs.” (I think?) [[User:Miamiclay|Miamiclay]] ([[User talk:Miamiclay|talk]]) 21:11, 9 October 2022 (UTC)
 
: It occurred to me that the Boston to Paris gravity question might not be quite as easy as it seems, since the relevant distance would be not “as the crow flies,” but more “as the mega-gopher digs.” (I think?) [[User:Miamiclay|Miamiclay]] ([[User talk:Miamiclay|talk]]) 21:11, 9 October 2022 (UTC)
 
:: I already edited it away from the (implied) suggestion of Great Circle distance (as a trivial understanding of 'distance between', and probably what most searches for a value would turn up). But using latitude, longitude and radius (local, +altitude if you're into the detail) from a sufficiently accurate geophysical model (at least an oblate spheroid) as spherical coordinates leads quickly to true-ish straight-line length. And probably doesn't need to be sigbificantly further adjusted by the small dimple in spacetime that the Earth puts there, or even the fringe distortions of other tide-inducing (and therefore variable) gravitational bodies.
 
:: I already edited it away from the (implied) suggestion of Great Circle distance (as a trivial understanding of 'distance between', and probably what most searches for a value would turn up). But using latitude, longitude and radius (local, +altitude if you're into the detail) from a sufficiently accurate geophysical model (at least an oblate spheroid) as spherical coordinates leads quickly to true-ish straight-line length. And probably doesn't need to be sigbificantly further adjusted by the small dimple in spacetime that the Earth puts there, or even the fringe distortions of other tide-inducing (and therefore variable) gravitational bodies.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Templates used on this page: