Editing 1882: Color Models

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 10: Line 10:
 
[[Randall]] is describing how his level of understanding of colors has changed by age. The chart starts with two tracks of understanding color.
 
[[Randall]] is describing how his level of understanding of colors has changed by age. The chart starts with two tracks of understanding color.
  
In grade school he learned about the primary colors, and the very simple model of colors, as shown in the left track. Mixing of color solids, as in painting (or finger painting being probably the earliest exposure to color mixing), is intuitive for a child. The process is subtractive, and the more colors you mix the darker and closer to black you get. Color is seen by the eyes when light bounces off the solid colors and becomes light of different wavelengths that the eye can then see. However at this level, things just "look" like different colors without understanding light's role. The color models mentioned in the second point of the left track are the additive model {{w|RGB}} (red-green-blue) and the subtractive models {{w|RYB}} (red-yellow-blue) and {{w|CMYK}} (cyan-magenta-yellow-key, used in color printing).
+
In grade school he learned about the primary colors, and the very simple model of colors, as shown in the left track. Mixing of color solids, as in painting (or finger painting being probably the earliest exposure to color mixing), is intuitive for a child. The process is subtractive, and the more colors you mix the darker and closer to black you get. Color is seen by the eyes when light bounces off the solid colors and becomes light of different wavelengths that the eye can then see. However at this level, things just "look" like different colors without understanding light's role. The color models mentioned in the left track are the additive model {{w|RGB}} (red-green-blue), the substractive model {{w|RYB}} (red-yellow-blue), and {{w|CMYK}} (cyan-magenta-yellow-key) used in color printing.
  
 
The right track is about mixing of colored light, as in prisms and light waves, where mixing colors is additive and the more you mix the lighter and closer to white you get. But this is without a real understanding of light bouncing off surfaces, and is limited to an understanding of different colors of light and how they mix. The first exposure in grade school is usually by shining white light through a prism to separate it into the different visible colors.
 
The right track is about mixing of colored light, as in prisms and light waves, where mixing colors is additive and the more you mix the lighter and closer to white you get. But this is without a real understanding of light bouncing off surfaces, and is limited to an understanding of different colors of light and how they mix. The first exposure in grade school is usually by shining white light through a prism to separate it into the different visible colors.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)