Editing 2009: Hertzsprung-Russell Diagram

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 10: Line 10:
 
The {{w|Hertzsprung–Russell diagram}} is a scatterplot showing absolute luminosities of stars against its effective temperature or color. It's generally used to understand a star's age.
 
The {{w|Hertzsprung–Russell diagram}} is a scatterplot showing absolute luminosities of stars against its effective temperature or color. It's generally used to understand a star's age.
  
The axes are labeled in {{w|Kelvin}} (degrees {{w|Celsius}} above {{w|absolute zero}}) for {{w|effective temperature}} and, unlike many Hertzsprung–Russell diagrams, {{w|Watts}} for {{w|luminosity}}. While most Hertzsprung–Russell diagrams are labelled in units of {{w|solar luminosity}} or {{w|absolute magnitude}}, all three are perfectly valid measures of {{w|luminosity}}, which refers to the total power emitted by the star (or other body). {{w|Effective temperature}} refers to temperature of a blackbody with the same surface area and luminosity. This is meant to provide an estimate of the surface temperature of the object.
+
The axes are labeled in {{w|Kelvin}} (degrees {{w|Celsius}} above {{w|absolute zero}}) for {{w|effective temperature}} and, in a unlike many Hertzsprung–Russell diagrams, {{w|Watts}} for {{w|luminosity}}. While most Hertzsprung–Russell diagrams are labelled in units of {{w|solar luminosity}} or {{w|absolute magnitude}}, all three are perfectly valid measures of {{w|luminosity}}, which refers to the total power emitted by the star (or other body). {{w|Effective temperature}} refers to temperature of a blackbody with the same surface area and luminosity. This is meant to provide an estimate of the surface temperature of the object.
  
 
Roughly speaking, the luminosity (i.e. total power radiated) by an object is proportional to (1) the total surface area of the object, multiplied by (2) the (absolute) temperature raised to the fourth power. So a high luminosity generally results from either a very hot or a very large object, or a combination of the two. The surface-area dependence explains why the whale and the cruise ship are more luminous than the hotter campfire.
 
Roughly speaking, the luminosity (i.e. total power radiated) by an object is proportional to (1) the total surface area of the object, multiplied by (2) the (absolute) temperature raised to the fourth power. So a high luminosity generally results from either a very hot or a very large object, or a combination of the two. The surface-area dependence explains why the whale and the cruise ship are more luminous than the hotter campfire.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)