Editing 2317: Pinouts

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 79: Line 79:
 
| +240V DC
 
| +240V DC
 
| This is a reference to heavy-duty home and commercial appliances, which use 240V AC for power. Additionally, many cable specifications try to provide a way to power devices over them (PS/2, USB, Power over Ethernet,) but these small communication cables usually carry only DC and not AC electricity.
 
| This is a reference to heavy-duty home and commercial appliances, which use 240V AC for power. Additionally, many cable specifications try to provide a way to power devices over them (PS/2, USB, Power over Ethernet,) but these small communication cables usually carry only DC and not AC electricity.
High voltage power is only sometimes used in small communications connectors. It might help to keep the current of power lines low to avoid generating excess heat. With +240V DC inside the HDMI cable, monitors would not need any longer a separate power plug. This is similar to Power-over-Ethernet, which does not exceed 60V, or ISDN, which goes up to 110V depending on country, and helps surveillance cameras or telephones to work with one connecting cable only. But with this much voltage on such a small cable, a short could lead more likely to melting the insulation and wiring in a sudden burst of toxic smoke. The produced thermal power through a short with resistance R_short that is building up is U²/R_short, increasing with the square of the voltage (also the breakdown voltage of the isolation is more easily reached). However, a high voltage reduces the chance of a peripheral drawing too much current, which could cause a fire on thin wires otherwise: The current through the cable for a device, needing a given power of P, is I = P_dev/U, the thermal power of the cables with resistance R is P_cables = R_cables*= R_cables*P_dev²/U², so it is reduced by the square of the voltage.
+
High voltage power is only sometimes used in small communications connectors. It might help to keep the current of power lines low to avoid generating excess heat. With +240V DC inside the HDMI cable, monitors would not need any longer a separate power plug. This is similar to Power-over-Ethernet, which does not exceed 60V, or ISDN, which goes up to 110V depending on country, and helps surveillance cameras or telephones to work with one connecting cable only. But with this much voltage on such a small cable, a short could lead more likely to melting the insulation and wiring in a sudden burst of toxic smoke. The produced thermal power through a short with resistance R that is building up is U²/R, increasing with the square of the voltage. However, a high voltage reduces the chance of a peripheral drawing too much current, which could cause a fire on thin wires otherwise: The current for a device, needing a power of P, is I = P_dev/U, the thermal power of the cables with resistance R is P_cables = *R = P_dev*R/U², so it is reduced by the square of the voltage.
 
| 13
 
| 13
 
| CEC
 
| CEC

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)