Editing 2804: Marshmallow

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 18: Line 18:
 
Having a long, thin extension to the airflow will disrupt the aerodynamics, as air starts pushing up against the roasting stick, creating an unbalanced torque that pushes the marshmallow further back into the airflow, rotating the entire capsule. This angular acceleration continues until the aerodynamic design of the rest of the capsule plays a significant factor, rotating the capsule back to its original position, and starting the uncontrollable cycle of oscillations anew. Hence, the astronaut on board reports some oscillations to Houston.
 
Having a long, thin extension to the airflow will disrupt the aerodynamics, as air starts pushing up against the roasting stick, creating an unbalanced torque that pushes the marshmallow further back into the airflow, rotating the entire capsule. This angular acceleration continues until the aerodynamic design of the rest of the capsule plays a significant factor, rotating the capsule back to its original position, and starting the uncontrollable cycle of oscillations anew. Hence, the astronaut on board reports some oscillations to Houston.
  
βˆ’
This prompts the unnamed astronaut to tell their colleague, Smith, to put away the marshmallow roaster. This would clean up the aerodynamic profile and stop the oscillation. This is met with resistance that the marshmallow is not cooked yet. This may be expected, as due to the design of the module, it appears as though the marshmallow has been on the outside of the capsule for the entire journey, exposed to the vacuum of space. In this situation, it would have radiated all its heat energy away, reaching temperatures near absolute zero (approximately -273.15 degrees Celsius, the absolute coldest temperature physically achievable). A very brief moment of shock heating from atmospheric effects may not have bought the marshmallow up to a consumable temperature, or even affected the internals of the marshmallow at all. The goal of roasting marshmallows is often to melt the inside of a marshmallow completely, so if this is still frozen, that defeats the entire purpose of the module.
+
This prompts the unnamed astronaut to tell his colleague, Smith, to put away the marshmallow roaster. This would clean up the aerodynamic profile and stop the oscillation. This is met with resistance that the marshmallow is not cooked yet. This may be expected, as due to the design of the module, it appears as though the marshmallow has been on the outside of the capsule for the entire journey, exposed to the vacuum of space. In this situation, it would have radiated all its heat energy away, reaching temperatures near absolute zero (approximately -273.15 degrees Celsius, the absolute coldest temperature physically achievable). A very brief moment of shock heating from atmospheric effects may not have bought the marshmallow up to a consumable temperature, or even affected the internals of the marshmallow at all. The goal of roasting marshmallows is often to melt the inside of a marshmallow completely, so if this is still frozen, that defeats the entire purpose of the module.
  
 
"Houston" is the radio {{w|callsign}} for {{w|Christopher C. Kraft Jr. Mission Control Center|NASA Mission Control}}, located in Houston, Texas. During reentry, the superheated air forms a plasma phase and disrupts radio signals. Hence, it is doubtful that Mission Control would have received this communication from the capsule, and it is very unlikely Mission Control would have received further updates from the capsule until the reentry process was largely finished. This would make the Mission Control operators very concerned over the success of the reentry. But as orbital mechanic and spaceman extraordinaire {{w|Scott Manley}} has discussed the feasibility of [https://www.youtube.com/watch?v=Zwf0RWXx8BY roasting a turkey by dropping it from space] (and Randall has himself addressed the issue of {{what if|28|cooking steaks}}), the astronauts featured in this cartoon are not straying too far from accepted marshmallow roasting techniques and should not be reprimanded by NASA.
 
"Houston" is the radio {{w|callsign}} for {{w|Christopher C. Kraft Jr. Mission Control Center|NASA Mission Control}}, located in Houston, Texas. During reentry, the superheated air forms a plasma phase and disrupts radio signals. Hence, it is doubtful that Mission Control would have received this communication from the capsule, and it is very unlikely Mission Control would have received further updates from the capsule until the reentry process was largely finished. This would make the Mission Control operators very concerned over the success of the reentry. But as orbital mechanic and spaceman extraordinaire {{w|Scott Manley}} has discussed the feasibility of [https://www.youtube.com/watch?v=Zwf0RWXx8BY roasting a turkey by dropping it from space] (and Randall has himself addressed the issue of {{what if|28|cooking steaks}}), the astronauts featured in this cartoon are not straying too far from accepted marshmallow roasting techniques and should not be reprimanded by NASA.

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)