Editing 2860: Decay Modes

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 15: Line 15:
 
The first six modes are real, and most occur relatively frequently:
 
The first six modes are real, and most occur relatively frequently:
  
In '''{{w|alpha decay}}''', an unstable nucleus emits an alpha particle, composed of two protons and two neutrons. Alpha decay is the primary source of helium on Earth, as alpha particles are <sup>4</sup>He nuclei. This decay mode is most commonly seen in proton-rich / neutron-deficient heavy nuclei, which normally have many more neutrons than protons. By reducing the numbers of protons and neutrons by 2 apiece, the product nucleus has a higher ratio of neutrons to protons.
+
In '''{{w|alpha decay}}''', an unstable nucleus emits an alpha particle, composed of two protons and two neutrons. Alpha decay is the primary source of helium on Earth, as alpha particles are <sup>4</sup>He nuclei.
  
In '''{{w|beta decay}}''' (more properly beta-minus decay), a neutron-rich nucleus emits a W⁻ boson, converting one neutron into a proton, as shown in the supplementary diagram.  The boson, in turn, decays into an electron (the titular beta (minus) particle) and an electron antineutrino. The main diagram shows only the release of the beta particle, which was the only thing expelled from the nucleus that could be observed directly when the types of nuclear decay were first described and enumerated.
+
In '''{{w|beta decay}}''' (more properly beta-minus decay), a neutron-rich nucleus emits a W⁻ boson, converting one neutron into a proton as shown in the supplementary diagram — which in turn decays into an electron (the titular beta (minus) particle) and an electron antineutrino. The main diagram shows only the release of the beta particle, which was the only thing expelled from the nucleus that could be observed directly when the types of nuclear decay were first described and enumerated.
  
 
In '''{{w|gamma decay}}''', an unstable nucleus (represented by the lumpy, prolate nucleus in the diagram – representing a high-energy {{w|nuclear isomer}}) emits a high-energy photon known as a {{w|gamma ray}} and settles into a stabler, lower-energy state.  
 
In '''{{w|gamma decay}}''', an unstable nucleus (represented by the lumpy, prolate nucleus in the diagram – representing a high-energy {{w|nuclear isomer}}) emits a high-energy photon known as a {{w|gamma ray}} and settles into a stabler, lower-energy state.  
Line 23: Line 23:
 
In '''{{w|electron capture}}''', a proton-rich atom captures an electron from the K or L electron shell. This converts a proton into a neutron and emits an electron neutrino. Randall adds a 'slurp' written sound effect in the comic to make the effect more clear; in real life no sound is actually present in an electron capture event. {{Citation needed}}
 
In '''{{w|electron capture}}''', a proton-rich atom captures an electron from the K or L electron shell. This converts a proton into a neutron and emits an electron neutrino. Randall adds a 'slurp' written sound effect in the comic to make the effect more clear; in real life no sound is actually present in an electron capture event. {{Citation needed}}
  
In '''{{w|positron emission}}''', or beta plus decay, a proton-rich nucleus emits a W⁺ boson, converting one proton into a neutron. The boson, in turn, decays into a positron (the beta plus particle) and an electron neutrino. Again, the main diagram shows only the beta particle, presumably for simplicity, the nucleon conversion being shown separately. This is much rarer than beta minus decay.
+
In '''{{w|positron emission}}''', or beta plus decay, a proton-rich nucleus emits a W⁺ boson, converting one proton into a neutron, which in turn decays into a positron, the beta plus particle, and an electron neutrino. Again, the main diagram shows only the beta particle, presumably for simplicity, the nucleon conversion being shown separately. This is much rarer than beta minus decay.
  
 
In '''{{w|neutron emission}}''', a neutron-rich/proton-deficient unstable nucleus emits a neutron (which then goes on to decay into further daughter particles).
 
In '''{{w|neutron emission}}''', a neutron-rich/proton-deficient unstable nucleus emits a neutron (which then goes on to decay into further daughter particles).

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)