Editing Talk:1724: Proofs
Please sign your posts with ~~~~ |
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.
The edit can be undone.
Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision | Your text | ||
Line 35: | Line 35: | ||
---- | ---- | ||
"''In the title text the decision of whether to take the axiom of choice is made by a deterministic process. The axiom of determinacy is incompatible with the axiom of choice...''" The axiom of determinacy is not really relevant to deterministic processes - it is about (certain types of two-players-) games and says that any such game is determined (that is, some player has a winning strategy). So this axiom is not relevant to the title text --[[Special:Contributions/162.158.83.66|162.158.83.66]] 17:39, 24 August 2016 (UTC) | "''In the title text the decision of whether to take the axiom of choice is made by a deterministic process. The axiom of determinacy is incompatible with the axiom of choice...''" The axiom of determinacy is not really relevant to deterministic processes - it is about (certain types of two-players-) games and says that any such game is determined (that is, some player has a winning strategy). So this axiom is not relevant to the title text --[[Special:Contributions/162.158.83.66|162.158.83.66]] 17:39, 24 August 2016 (UTC) | ||
− | + | ||
I feel like it is a stretch to assert Lenhart is setting up a proof by contradiction. It sounded to me more like an prior knowledge proof (not sure it's technical name). For example, "calculate the space between two concentric circles of differing diameter when the longest straight line you can draw is length d." If you assume there is a function F(r1, r2) which has been previously proven to calculate this space, then it is easy to show that the space is in fact .5*pi*(.5*d)^2 (as you have a degenerative case where r1=0, and you have an ordinary circle). I also think this type of proof is more "dark magic"-feeling than a simple proof by contradiction. {{unsigned ip|108.162.216.87}} | I feel like it is a stretch to assert Lenhart is setting up a proof by contradiction. It sounded to me more like an prior knowledge proof (not sure it's technical name). For example, "calculate the space between two concentric circles of differing diameter when the longest straight line you can draw is length d." If you assume there is a function F(r1, r2) which has been previously proven to calculate this space, then it is easy to show that the space is in fact .5*pi*(.5*d)^2 (as you have a degenerative case where r1=0, and you have an ordinary circle). I also think this type of proof is more "dark magic"-feeling than a simple proof by contradiction. {{unsigned ip|108.162.216.87}} |