Editing Talk:2117: Differentiation and Integration

Jump to: navigation, search
Ambox notice.png Please sign your posts with ~~~~

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 5: Line 5:
  
 
And Calc 2 is why I stopped being a Computer Science major and moved (eventually) to majoring in English. Consistent 4.0s in math through Trig and Calc I ... 1.6 in Calc II, retook and got a 1.8. Without the Calc, couldn't do the physics; without the physics, couldn't get my 2-yr degree and move on from community college to a full university. I don't know what all the integration stuff in the flowchart is (since I didn't do well in Calc and it was a long time ago), but there's so very many things that become [https://en.wikipedia.org/wiki/Nonelementary_integral nonelementary integrals] that all sorts of special tricks have to be employed for things that look like they should be easy. It's like having a problem that's very easy to do division on, but requires special advanced mathematical tricks to use multiplication upon.[[Special:Contributions/108.162.216.208|108.162.216.208]] 19:07, 27 February 2019 (UTC)
 
And Calc 2 is why I stopped being a Computer Science major and moved (eventually) to majoring in English. Consistent 4.0s in math through Trig and Calc I ... 1.6 in Calc II, retook and got a 1.8. Without the Calc, couldn't do the physics; without the physics, couldn't get my 2-yr degree and move on from community college to a full university. I don't know what all the integration stuff in the flowchart is (since I didn't do well in Calc and it was a long time ago), but there's so very many things that become [https://en.wikipedia.org/wiki/Nonelementary_integral nonelementary integrals] that all sorts of special tricks have to be employed for things that look like they should be easy. It's like having a problem that's very easy to do division on, but requires special advanced mathematical tricks to use multiplication upon.[[Special:Contributions/108.162.216.208|108.162.216.208]] 19:07, 27 February 2019 (UTC)
 
Going to start learning integration in 3 weeks... Wish me luck. [[Special:Contributions/162.158.62.96|162.158.62.96]] 12:53, 3 November 2021 (UTC)
 
  
 
Basic ideas:
 
Basic ideas:
Line 32: Line 30:
 
Probably because he put a +C joke in 1201:_Integration_by_Parts. [[Special:Contributions/108.162.219.160|108.162.219.160]] 13:48, 2 March 2019 (UTC)
 
Probably because he put a +C joke in 1201:_Integration_by_Parts. [[Special:Contributions/108.162.219.160|108.162.219.160]] 13:48, 2 March 2019 (UTC)
  
Why is all the maths broken [[User:GcGYSF(asterisk)P(vertical line)e|GcGYSF(asterisk)P(vertical line)e]] ([[User talk:GcGYSF(asterisk)P(vertical line)e|talk]]) 22:24, 4 May 2022 (UTC)
 
 
== Risch algorithm ==
 
== Risch algorithm ==
  
Line 56: Line 53:
  
 
Current summary says that the comic overstates the case of how difficult integration can be. I'm not sure that's true. Sure, you can use numerical integration to get a specific area under the curve, but that's not what the comic is referring to. Unless some mathematician can show here how integration can be done by repeatedly following a set of fixed rules, Ithis comic is actually completely accurate. And that's why it's funny. :-)
 
Current summary says that the comic overstates the case of how difficult integration can be. I'm not sure that's true. Sure, you can use numerical integration to get a specific area under the curve, but that's not what the comic is referring to. Unless some mathematician can show here how integration can be done by repeatedly following a set of fixed rules, Ithis comic is actually completely accurate. And that's why it's funny. :-)
 
== Purify the Power rule? ==
 
The derivative power rule shown is combined with the chain rule.  I think it should be stated to be a pure power rule, without the chain rule components.  When I tried making that adjustment, I got error messages that I could not resolve, so could someone who knows how the MATH feature works remove the chain rule from the power rule? [[User:Nutster|Nutster]] ([[User talk:Nutster|talk]]) 18:44, 26 December 2021 (UTC)
 

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)

Templates used on this page: