Editing 936: Password Strength

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.
Latest revision Your text
Line 10: Line 10:
 
This comic says that a password such as "Tr0ub4dor&3" is bad because it is easy for password cracking software and hard for humans to remember, leading to insecure practices like writing the password down on a post-it attached to the monitor. On the other hand, a password such as "correct horse battery staple" is hard for computers to guess due to having more entropy but quite easy for humans to remember.
 
This comic says that a password such as "Tr0ub4dor&3" is bad because it is easy for password cracking software and hard for humans to remember, leading to insecure practices like writing the password down on a post-it attached to the monitor. On the other hand, a password such as "correct horse battery staple" is hard for computers to guess due to having more entropy but quite easy for humans to remember.
  
{{w|Entropy (information theory)|Entropy}} is a measure of "uncertainty" in an outcome. In this context, it can be thought of as a value representing how unpredictable the next character of a password is. It is calculated as ''log2(a^b)'' where ''a'' is the number of allowed symbols and ''b'' is its length.
+
{{w|Entropy (information theory)|Entropy}} is a measure of "uncertainty" in an outcome. In this context, it can be thought of as a value representing how unpredictable the next character of of a password is. It is calculated as ''log2(a^b)'' where ''a'' is the number of allowed symbols and ''b'' is its length.
  
 
A truly random string of length 11 (not like "Tr0ub4dor&3", but more like "J4I/tyJ&Acy") has log2(94^11) = 72.1 bits, with 94 being the total number of letters, numbers, and symbols one can choose. However the comic shows that "Tr0ub4dor&3" has only 28 bits of entropy. This is because the password follows a simple pattern of a dictionary word + a couple extra numbers or symbols, hence the entropy calculation is more appropriately expressed with log2(65000*94*94), with 65000 representing a rough estimate of all dictionary words people are likely to choose. (For related info, see https://what-if.xkcd.com/34/).
 
A truly random string of length 11 (not like "Tr0ub4dor&3", but more like "J4I/tyJ&Acy") has log2(94^11) = 72.1 bits, with 94 being the total number of letters, numbers, and symbols one can choose. However the comic shows that "Tr0ub4dor&3" has only 28 bits of entropy. This is because the password follows a simple pattern of a dictionary word + a couple extra numbers or symbols, hence the entropy calculation is more appropriately expressed with log2(65000*94*94), with 65000 representing a rough estimate of all dictionary words people are likely to choose. (For related info, see https://what-if.xkcd.com/34/).

Please note that all contributions to explain xkcd may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see explain xkcd:Copyrights for details). Do not submit copyrighted work without permission!

To protect the wiki against automated edit spam, we kindly ask you to solve the following CAPTCHA:

Cancel | Editing help (opens in new window)